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Abstract 

Background: Clinical and pharmacological studies of obsessive-compulsive disorder (OCD) have suggested that the 
serotonergic systems are involved in the pathogenesis, while structural imaging studies have found some neuro-
anatomical abnormalities in OCD patients. In the etiopathogenesis of OCD, few studies have performed concurrent 
assessment of genetic and neuroanatomical variables.

Methods: We carried out a two-way ANOVA between a variable number of tandem repeat polymorphisms 
(5-HTTLPR) in the serotonin transporter gene and gray matter (GM) volumes in 40 OCD patients and 40 healthy con-
trols (HCs).

Results: We found that relative to the HCs, the OCD patients showed significant decreased GM volume in the right 
hippocampus, and increased GM volume in the left precentral gyrus. 5-HTTLPR polymorphism in OCD patients had a 
statistical tendency of stronger effects on the right frontal pole than those in HCs.

Conclusions: Our results showed that the neuroanatomical changes of specific GM regions could be endopheno-
types of 5-HTTLPR polymorphism in OCD.
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Background
Obsessive-compulsive disorder (OCD) was made a dis-
ease independent of anxiety disorder in DSM-5. One of 
the reasons for this separation is that the biological bases 
of OCD and anxiety disorder are different [1].

Structural imaging studies have found neuroanatomical 
abnormalities in the cortico–striatal–thalamo–cortical 
(CSTC) circuits in OCD patients [2]. A recent voxel-
based morphometry (VBM) systematic review suggested 
that widespread structural abnormalities may contribute 

to neurobiological vulnerability to OCD [3]. We previ-
ously found the presence of regional gray matter (GM) 
and white matter (WM) volume abnormalities in OCD 
patients [4].

Furthermore, positron emission tomography (PET) 
and functional magnetic resonance imaging (fMRI) have 
revealed abnormal activities in different nodes of the 
CSTC circuits in OCD patients compared with healthy 
controls (HCs) [2, 5]. In our previous fMRI study, we 
found decreased activations in several brain regions 
including the orbitofrontal cortex (OFC) [6] and a spe-
cific relationship between fMRI activation and symptom 
subtypes [7].

Meanwhile, family and twin studies have provided evi-
dence for the involvement of a genetic factor in OCD. 
However, many linkage, association, and genome-wide 
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association studies have failed to identify responsible 
genes [8, 9].

Molecular genetic studies have focused on some struc-
tures, including receptor and transporter proteins, in the 
serotonergic and dopaminergic system.

Based on transporter imaging findings, a PET study 
[10] found a decrease of serotonin transporter binding in 
the insular cortex in OCD patients. They suggested that 
dysfunction of the serotonergic system in the limbic area 
might be involved in the pathophysiology of OCD.

It is possible to hypothesize that a polymorphism in the 
transcriptional control region upstream of the 5-hydrox-
ytryptamine (serotonin) transporter (5-HTT) coding 
sequence could be an important factor in conferring sus-
ceptibility to OCD [8, 11, 12]. The 5-HTTLPR consists 
of a 44-bp deletion/insertion yielding a 14-repeat allele 
(short; S) and a 16-repeat allele (long; L). The S allele 
reduces the transcriptional efficiency of the 5-HTT gene 
promotor, resulting in decreased 5-HTT expression and 
availability. Bloch et al. [11]. suggested the possibility that 
the L allele is associated with specific OCD subgroups 
such as childhood-onset OCD. In contrast, Lin et al. [12] 
found that OCD was associated with the SS homozygous 
genotype. Some researchers suggested that this L allele 
could be subdivided further to LA and LG alleles [13]. The 
LG allele, which is the L allele with an A→G substitu-
tion (rs25531), is thought to be similar to the S allele in 
terms of reuptake efficiency [14]. Rocha et al. [15] found 
that the LA allele was associated to OCD. Hu et al. [14] 
found that the LALA genotype was approximately twice as 
common in 169 whites with OCD than in 253 ethnically 
matched controls, and the LA allele was twofold over-
transmitted to the patients with OCD.

Despite the genetic and neuroanatomical importance, 
few studies of the etiopathogenesis of OCD have con-
currently assessed genetic and neuroanatomical vari-
ables. We hypothesized that the widespread structural 
brain changes in OCD indicate the endophenotype of 
the 5-HTTLPR polymorphism. Therefore, the aim of this 
study was to investigate the association of genetic vari-
ations of the 5-HTTLPR with neuroanatomical changes 
in OCD.

Methods
Subjects
We studied 40 OCD patients (20 females and 20 males) 
who met DSM-IV [16] criteria for OCD and had no 
DSM-IV Axis I disorders except OCD and major depres-
sive disorder as screened by the Structured Clinical 
Interview for DSM-IV (SCID). Patients who displayed 
a comorbid axis I diagnosis, neurological disorder, head 
injury, serious medical condition, or history of drug/alco-
hol addiction were excluded. We determined psychiatric 

diagnoses by a consensus of at least two psychiatrists 
after screening by SCID. Patients were recruited from 
among outpatients and inpatients of the Department of 
Neuropsychiatry, Kyushu University Hospital, Japan. 
Severity of OCD symptoms was assessed with the Yale-
Brown Obsessive Compulsive Scale (Y-BOCS) [17]. 
Patients were also screened for the presence of depres-
sive symptoms through the administration of the 17-item 
Hamilton Depression Rating Scale (HDRS) [18]. Forty 
HCs (26 females and 14 males) who were matched to the 
patients in age and sex were recruited from the staff of 
Kyushu University Hospital and related agencies. They 
had no DSM-IV Axis I disorders as determined by the 
SCID. They also had no current medical problems, psy-
chiatric histories, neurological disorders, or mental retar-
dation. Handedness was determined according to the 
Edinburgh Handedness Inventory for both OCD patients 
and HCs [19].

The study was approved by the local ethics committee 
<22-111, 491-01>, and each participating patient pro-
vided written informed consent after receiving a com-
plete description of the study, which was approved by the 
institutional review board.

MRI procedures
All imaging examinations were performed on a 3.0-T 
MRI scanner (Achieva TX, Philips Healthcare, Best, The 
Netherlands) with a standard head coil at the Department 
of Radiology, Kyushu University. T1-weighted images 
were acquired with a 3D T1-weighted turbo field echo 
sequence with the following parameters: repetition time 
(TR) = 8.2 ms, echo time (TE) = 3.8 ms, flip angle = 8°, 
matrix  =  240  ×  240, T1 inversion time  =  1026  ms, 
field of view (FOV) =  240 ×  240  mm, NSA =  1, slice 
thickness  =  1  mm, number of slices  =  190, and scan 
time = 320 s.

VBM data processing
Acquired images were first converted from DICOM to 
NifTI-1 format using dcm2nii software (http://www.
mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.
html). Data processing and examinations were performed 
with SPM8 software (developed under the auspices of 
the Functional Imaging Laboratory, The Wellcome Trust 
Centre for Neuroimaging at the Institute of Neurology at 
University College London, UK, http://www.fil.ion.ucl.
ac.uk/spm/) in the environment of MATLAB (2011b ver., 
http://www.mathworks.co.jp/products/matlab/). AC–PC 
orientation was conducted on all T1-weighted data by 
an automatic process. Then, we applied the VBM8 tool-
box (http://dbm.neuro.uni-jena.de/467/) for preprocess-
ing the structural images by the VBM procedure. This 
VBM8 algorithm involves image bias correction, tissue 
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classification, and normalization to the standard Mon-
treal Neurological Institute (MNI) space using linear 
(12-parameter affine) and non-linear transformations. 
High-dimension DARTEL normalization, which is rather 
unbiased in its segmentation process, was used as ana-
tomical registration with the default template provided 
in the VBM8 toolbox. Gray matter (GM) and white mat-
ter (WM) segments were modulated only by non-linear 
components, which allowed comparing the absolute 
amount of tissue corrected for individual brain volume, 
that is, correction for total brain volume.

Finally, modulated images were smoothed with a 
Gaussian kernel of 8  mm full width at half maximum. 
Although we used the East Asian Brains template in 
the process of affine regularization instead of European 
Brains, the default parameters were used in all other 
steps. Finally, 40 OCD patients and 40 HCs were assessed 
by structural MRI examinations with a 3.0-T MRI 
scanner.

Genotyping
A 10-ml venous blood sample was collected in EDTA 
vacuum tubes. Samples were immediately frozen at 
−80 °C until extraction of genomic DNA from nucleated 
white blood cells. Genomic DNA was extracted from 
peripheral blood leukocytes using a Promega DNA Puri-
fication Kit (Promega, Madison, WI, USA).

The polymerase chain reaction (PCR) was used to amplify 
5-HTTLPR polymorphism. Forward (5′-GGCGTTGC-
CGCTCTGAATGC-3′) and reverse (5′-GAGGGACT-
GAGCTGGACAACCAC-3′) primers were used to amplify 
a fragment including 5-HTTLPR [20]. These primers 
amplify a 529-bp fragment for the S allele and a 575-bp 
fragment for the L allele.

PCR amplification was carried out in a final volume 
of 15 μl consisting of 50–100 ng genomic DNA, 2.5 mM 
deoxyribonucleotides, 0.2  μM of forward and reverse 
primers, PCR buffer (2×  GC Buffer I, Takara Bio Inc., 
Shiga, Japan), and 1.25  U of DNA polymerase (TaKaRa 
LA Taq, Takara Bio Inc.). Denaturation was carried out at 
94 °C for 30 s, annealing at 64 °C for 30 s, and extension 
at 72 °C for 3 min for 40 cycles.

To identify LA and LG alleles, a two-step protocol was 
performed. Step I: determination of the L or S allele, as 
described above; and step II: digestion of this amplicon 
with HapII (Takara Bio Inc.) restriction endonuclease. 
The assay was designed to include an invariant HapII 
digest site located 94 bp from the end of the amplicon to 
provide an internal control for digestion/partial diges-
tion. Products were separated on a 4.0% agarose gel 
(Agarose-LE, Classic Type, Nacalai Tesque, Inc., Kyoto, 
Japan) supplemented with ethidium bromide (0.01%, 
Nacalai Tesque) and visualized under ultraviolet light. 

After separation of the digestion products by electro-
phoresis, the following restriction fragment allele sizes 
were obtained: LA (341, 126, 62 bp) and LG (174, 167, 126, 
62 bp).

Statistical analysis
We conducted a two-sample t test, Chi square test, and 
Fisher’s exact test to test for differences in demographic 
variables between OCD patients and HCs as well as 
between different variants of the alleles of 5-HTTLPR in 
OCD patients.

The genotype frequencies of OCD patients and HCs 
were compared using Chi square test after checking the 
Hardy–Weinberg equilibrium.

We divided the patients into LA allele carriers (SLA, 
LALG, and LALA) and non-LA allele carriers (SS, SLG, and 
LGLG). Hu et  al. [14] noted that the normalized (to SS 
genotype) expression value of the LA allele was approxi-
mately double the values of the S and LG alleles. Thus, we 
thought that expressions of genotypes including the LA 
allele were higher than those of other genotypes.

Statistical analysis was performed with SPM8, which 
implemented a general linear model. First, we performed 
a two-sample t test to detect the difference in GM volume 
between patients with OCD and HCs. The initial voxel 
threshold was set to P < 0.001 uncorrected. Clusters were 
considered significant that fell below a cluster-corrected 
family-wise error (FWE), P = 0.05. Next, we performed 
a two-way factorial analysis of variance between the 
5-HTTLPR polymorphism and GM volumes in the OCD 
patients and HCs. A two-way ANOVA test was applied 
to assess the relationship between 5-HTTLPR polymor-
phism (LA or non-LA allele carriers) and GM brain vol-
ume changes in the OCD patients and HCs. If a statistical 
difference was present, a post hoc t test was performed 
to detect the inter-group difference of brain regions. Age 
and sex were set as covariates in the statistical analysis. 
We used a threshold of P  <  0.05 cluster-corrected fam-
ily-wise error (FWE) and P  <  0.001 uncorrected with 
expected voxels per clusters. The P < 0.001 value is com-
monly used in VBM-based OCD studies [21–23].

Results
In demographic variables of age, gender, and handed-
ness, OCD patients and HCs did not show any signifi-
cant differences (Table  1). These variables also showed 
no significant difference between the genotypes of LA 
allele carriers or non-LA allele carriers in OCD patients 
(Table 2). OCD patients had significantly fewer years of 
education than HCs (Table 1). Non-LA allele carriers, fur-
thermore, had significantly fewer years of education than 
those of LA allele carriers (Table 2). No significant differ-
ences were shown between the two genotypes in OCD 
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regarding illness duration, age of onset, total Y-BOCS, or 
the 17-item HDRS (Table 2).

The genotype frequencies of our samples did not devi-
ate significantly from the values predicted by the Hardy–
Weinberg equation.

As for the genotypic distribution, 1/40 OCD patients 
(2.5%) and 1/40 HCs (2.5%) were LL homozygotes, 13/40 

OCD patients (32.5%) and 22/40 HCs (55.0%) were LS 
heterozygotes, 26/40 OCD patients (65%) and 17/40 HCs 
(42.5%) were SS homozygotes, and 10/40 OCD patients 
(25.0%) and 20/40 HCs (50.0%) were LA allele carri-
ers. We found a significant difference between the OCD 
patients and HCs in the distribution of LA allele carriers 
or non-LA allele carriers of 5-HTTLPR polymorphism 
(χ2=5.333, 1 df, P = 0.021; Table 1).

In morphological changes in OCD, compared to the 
HCs, the OCD patients showed significant decreased 
GM volumes in the right hippocampus (extent thresh-
old; k  =  763 voxels, P  <  0.05, FWE; Table  3; Fig.  1a) 
and increased GM volume in the left precentral gyrus 
(extent threshold; k = 797 voxels, P < 0.05, FWE; Table 3; 
Fig.  1b). In morphological changes associated with the 
5-HTTLPR polymorphism, compared to LA allele carri-
ers, non-LA allele carriers showed no significant GM vol-
ume difference.

As of genotype–diagnosis interaction, although no 
voxels survived multiple comparison, we observed a ten-
dency that 5-HTTLPR polymorphism in OCD patients 
had stronger effects on the right frontal pole than those 
in HCs (P < 0.001, uncorrected; Table 3; Fig. 2). The OCD 
patients with the LA allele carriers of 5-HTTLPR poly-
morphism exhibited a statistical tendency of reduction 
of GM volumes in the right frontal pole compared to the 
HCs with the LA allele carriers.

Discussion
In the present study, we found that the OCD patients 
showed significant decreased GM volume in the right 
hippocampus and increased GM volume in the left pre-
central gyrus. Moreover, our study suggested that LA 
allele carriers of the 5-HTTLPR polymorphism in OCD 
patients are associated with decreased GM volume in the 
right frontal pole.

Functional neuroimaging studies have been suggested 
that hippocampus might have an important role in the 

Table 1 Clinical and  demographic characteristics of  OCD 
patients and HCs

We found a significant difference between the OCD patients and HCs in 
the distribution of LA allele carriers or non-LA allele carriers of 5-HTTLPR 
polymorphism
a T test
b Chi square test

OCD patients 
(n = 40)

HCs (n = 40) P value

Age (years, 
mean ± SD)a

35.40 ± 12.07 39.70 ± 12.97 0.129

Gender (female/male)b 20/20 26/14 0.175

Handedness (right/
left)b

37/3 39/1 0.305

Education (years, 
mean ± SD)a

13.69 ± 2.43 15.15 ± 1.35 0.001

Illness duration (years, 
mean ± SD)

11.33 ± 10.10

Age of onset (years, 
mean ± SD)

23.98 ± 11.24

Total Y-BOCS (total 
score, mean ± SD)

21.95 ± 6.32

HDRS (17 items)a 6.08 ± 6.87 0.55 ± 0.88 0.000

5-HTTLPRa

 14/14 26 17 0.040

 14/16 13 22

 16/16 1 1

LA allele carriers (SLA, 
LALG, LALA)b

10 20 0.021

Non-LA allele carriers 
(SS, SLG, LGLG)b

30 20

Table 2 Clinical and demographic characteristics of non-LA allele carriers and LA allele carriers in OCD patients

a T test
b Chi square test

Non-LA allele carriers (n = 30)
(SS, SLG, LGLG)

LA allele carriers (n = 10)
(SLA, LALG, LALA)

P value

Age (years, mean ± SD)a 36.77 ± 12.50 31.30 ± 10.15 0.219

Gender (female/male)b 15/15 5/5 1.000

Handedness (right/left)b 27/3 10/0 0.411

Education (years, mean ± SD)a 13.23 ± 2.46 15.00 ± 1.70 0.042

Illness duration (years, mean ± SD)a 12.27 ± 10.75 8.50 ± 7.61 0.313

Age of onset (years, mean ± SD)a 24.53 ± 11.90 22.30 ± 9.30 0.593

Total Y-BOCS (total score, mean ± SD)a 22.75 ± 6.53 19.44 ± 5.15 0.176

HDRS (17 items)a 6.76 ± 7.61 4.10 ± 3.70 0.157
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pathophysiology of OCD [24, 25]. On the other hand, 
structural imaging studies have been suggested that hip-
pocampal alteration may play an important role in the 
pathophysiology of OCD [26, 27].

The precentral gyrus is a prominent structure on the sur-
face of the posterior frontal lobe. It is the site of the primary 
motor cortex (Brodmann area 4). Several researchers have 
suggested that the precentral gyrus may be involved in the 
pathophysiology of OCD [28, 29]. Russo et  al. [30] sug-
gested that OCD might be considered as a sensory motor 
disorder where a dysfunction of sensory–motor integration 
might play an important role in the release of motor com-
pulsions. Our results also showed that the precentral gyrus 
might be involved in the pathophysiology of OCD.

The frontal pole comprises the most anterior part of 
the frontal lobe that approximately covers BA10. During 
human evolution, the functions in this area resulted in its 
expansion relative to the rest of the brain [31]. Specifi-
cally, the functions include multi-tasking [32], cognitive 
branching [33], prospective memory [34], conflict resolu-
tion [35], and selection of sub-goals [36]. It is suggested 
that such a highly advanced cognitive function is affected 
in OCD [37, 38].

In the field of imaging genetics, many researchers 
reported [39–42] an association between the serotonin 
transporter gene and brain structure. Regarding OCD, 
Atmaca et  al. [43] found a significant genotype-by-side 
interaction for the OFC.

Table 3 VBM analysis including  association of  variance between  5-HTTLPR polymorphisms and  GM volumes in  OCD 
patients and HCs

R right, L left, FWE family-wise error, 〈k〉 expected voxels per clusters

Regions Brodmann area Cluster size Z Talairach coordinates
x, y, z (mm2)

Main effects

 Diagnosis effects (P < 0.05, FWE, 〈k〉 = 77.666)

 R hippocampus (OCD patients < HCs) 763 5.08 33, −16, −18

 L precentral gyrus (OCD patients > HCs) 4 797 4.88 −28, −27, 64

Genotype effects

 No suprathreshold clusters

 Genotype-diagnosis interaction effects (P < 0.001, uncorrected, 〈k〉 = 63.146)

R frontal pole 10 112 4.35 26, 50, −6

Fig. 1 a OCD patients showed decreased GM volume in the right hippocampus compared to HCs. b OCD patients showed increased GM volume 
in the left precentral gyrus compared to HCs [P < 0.005, cluster-corrected family-wise error (FWE), 〈k〉 = 77.666]
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In contrast to the previous result reported by Atmaca 
et al. [43], our result suggested that a liability in develop-
ment of the central nervous system might have occurred 
in OCD patients who are LA allele carriers. Frodl et  al. 
[44] suggested that the high-activity LA allele with its 
increased number of 5-HTT transporter proteins, con-
comitant decrease in serotonin levels, and reduced 
effects on neuroplastic processes might cause structural 
changes during major depression. With similar mecha-
nism, the volume decrease in the right frontal pole might 
have occurred in OCD patients who are LA allele carriers.

There are some limitations to this study. First, we 
divided the patients into LA allele carriers (SLA, LALG, 
and LALA) and non-LA allele carriers (SS, SLG, and LGLG). 
In the view of expression activity, it might be better to 
divide samples into LALA and others. Although we could 
not employ this division because our study included few 
LALA genotypes, the difference between LALA and other 
genotypes should be explored with larger samples in 
the future. In addition, our sample size was too small to 

identify the difference between the effects of LA and non-
LA alleles on the brains of OCD patients and HCs. Thus, 
these findings should be considered preliminary until 
replicated in a larger sample.

The OCD patients had significantly fewer years of 
education than HCs, and non-LA allele carriers had sig-
nificantly fewer than LA allele carriers. Education years 
might affect the difference in GM volumes if education 
years were proportional to high intelligence. In this study, 
we did not measure the intelligence quotient (IQ). Larger 
gray matter volumes are associated with higher IQ [45]. 
Ideally, the IQ should be measured and set as a covariate 
in the statistical analysis.

Although we examined 5-HTTLPR polymorphism 
as the sole candidate gene in this study, many other 
polymorphisms such as glutamate system genes and 
dopamine system genes [46, 47] may affect the brain 
morphology of OCD patients. We hope to explore an 
association between more candidate genetic polymor-
phisms and brain morphology in the future.

Fig. 2 Results of genotype–diagnosis interaction effects on brain morphology. The stronger effects of 5-HTTLPR polymorphism on brain morphol-
ogy in OCD patients than those in HCs were noted in the right frontal pole (P < 0.001, uncorrected, 〈k〉 = 63.146)
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Moreover, the OCD patients were concurrently on 
medication. Our study was not designed to investigate 
medication effects. Thus, analyses of the effects of dif-
ferent medication types on the hippocampus, precentral 
gyrus, and frontal pole volumes did not reveal a signifi-
cant difference. Further studies are necessary to explore 
possible effects of medication.

Finally, the uncorrected threshold used in the present 
study may not fully protect against results due to chance 
and the results may include false positives. Therefore, the 
significant clusters found in the present study need to be 
validated further.

Conclusions
We found that relative to the HCs, the OCD patients 
showed significant decreased GM volume in the right 
hippocampus, and increased GM volume in the left pre-
central gyrus. The OCD patients with the LA allele car-
riers of 5-HTTLPR polymorphism exhibited a statistical 
tendency of reduction of GM volumes in the right fron-
tal pole compared to the HCs with the LA allele carriers. 
Our preliminary findings suggest that a variation of the 
5-HTTLPR polymorphism might affect brain morphol-
ogy differently in OCD patients and HCs in the right 
frontal pole volumes.
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